
E:\Internship project PIC18F4550\standard library examples\Timers\Timer1\timer1.c

//Description:

//

//

//This example is using the timer1 and interrupt to make shifting LED at every second.

//The timer1 register(TMR1H:TMR1L) has 16 bits and we use the internal clock as clock source.

//Suppose we choose the Prescaler as 1:8.

//

//The timer increment frequency = (Fosc/4)*(1/8)= (48MHz/4)*(1/8)= 1.5MHz.

//This time, we want to generate one interrupt every 20ms.Then,

//the amount of the timer register value for 20 ms = (20*e^-3)*(1.5*e^6) = 30000.

//

//The timer0 starting value = 0xFFFF-30000 =65535-30000 = 35535 =0x8ACF.

//Now we know every 20ms, one interrupt can be generated. As we want every 1 second, LED can

shift once.

//Then we can count the interrupts, if there have 50 interrupts been generated, we can get 1

second.

//

//Last, we make the LED shift during the interrupt service routine, and count the interrupt from

0 again.

#include <p18f4550.h>

#include <timers.h> // Include the timer library

void timer1_isr(void); //Interrupt service routine prototype

int i=0; //Interrupt counter

//Always include this code, it’s necessary when using a bootloader

extern void _startup (void);

#pragma code _RESET_INTERRUPT_VECTOR = 0x000800

void _reset (void)

{

_asm goto _startup _endasm

}

#pragma code

#pragma code _HIGH_INTERRUPT_VECTOR = 0x000808

 void high_ISR (void)

 {

 //Pre: The interrupt priority is defined as high and enabled.The high priority interrupt

service routine is called

 //Post: Execute the timer1_isr function.

 _asm goto timer1_isr _endasm //when the high priority interrupt is excuted, go to timer1

interrupt service routine

 }

#pragma code

#pragma code _LOW_INTERRUPT_VECTOR = 0x000818

void low_ISR (void)

{

;

}

#pragma code

//End bootloader code

#pragma interrupt timer1_isr //High priority interrupt service routine

 void timer1_isr(void)

 {

 //Pre: The high_ISR function is called.One integer for counting interrupts is defined.

 //Post: LED (from PortB) can shift every second.

 i++; //counting the interrupts, this value can increment by one at

every 20 ms.

 PIR1bits.TMR1IF = 0; //Reset Timer1 interrupt flag

 WriteTimer1(0x8ACF); //Give new starting value for timer1

 if(i==50) // every 1 second the LED can shift once (50*20ms=1 second)

 {

 LATB= LATB<<1; //shift lights

 if(LATB==0b00000000)

 {

 LATB=0b00000001; // go back to initial state of LEDs

1

E:\Internship project PIC18F4550\standard library examples\Timers\Timer1\timer1.c

 }

 i=0;

 }

 }

void main(void)

 {

 //Pre: The timer library is included.

 //Post: The timer1 overflow interrupt can be generated at every 20 ms.

 TRISB = 0x00; //Port B output

 LATB=0b00000001; //initial state of the LEDs.

 ADCON1 = 0b00001111; //All ADC disabled

 RCONbits.IPEN = 1; //Enable priority levels on interrupts

 RCONbits.SBOREN = 0; //Disable BOR

 OpenTimer1(TIMER_INT_ON & //Interrupt enabled

 T1_8BIT_RW & //set timer1 as two 8-bit registers

 T1_SOURCE_INT & //choose Internal clock source (TOSC)

 T1_PS_1_8 & // Prescale Value: 1:8

 T1_OSC1EN_OFF & //Disable Timer1 oscillator

 T1_SYNC_EXT_OFF //Don’t sync external clock input

);

 WriteTimer1(0x8ACF); //Set start value of timer,set interrupt at every 20 ms.

 INTCON = 0b10000000; //enable the high priority interrupts

 IPR1bits.TMR1IP = 1; //Timer1 interrupt priority high

 PIE1bits.TMR1IE = 1; //Timer1 interrupt enable

 while(1)

 {

 //add codes here.................

 }

 }

2

